A similarity measure to assess the stability of classification trees

نویسندگان

  • Bénédicte Briand
  • Gilles R. Ducharme
  • Vanessa Parache
  • Catherine Mercat-Rommens
چکیده

It has been recognized that Classification trees (CART) are unstable; a small perturbation in the input variables or a fresh sample can lead to a very different classification tree. Some approaches exist that try to correct this instability. However, their benefits can, at present, be appreciated only qualitatively. A similarity measure between two classification trees is introduced that can measure their closeness. Its usefulness is illustrated with synthetic data on the impact of radioactivity deposit through the environment. In this context, a modified node level stabilizing technique, referred to as theNLS–REPmethod, is introduced and shown to be more stable than the classical CART method. © 2008 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators

Plenty of researches have been carried out, focusing on the measures of distance, similarity, and correlation between intuitionistic fuzzy sets (IFSs).However, most of them are single-valued measures and lack of potential for efficiency validation.In this paper, a new vector valued similarity measure for IFSs is proposed based on OWA operators.The vector is defined as a two-tuple consisting of ...

متن کامل

Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering

 Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

Use of classification tree methods to study the habitat requirements of tench (Tinca tinca) (L., 1758)

Classification trees (J48) were induced to predict the habitat requirements of tench (Tinca tinca). 306 datasets were used for the given fish during 8 years in the river basins in Flanders (Belgium). The input variables consisted of the structural-habitat (width, depth, gradient slope and distance from the source) and physic chemical (pH, dissolved oxygen, water temperature and electric conduct...

متن کامل

خوشه‌بندی اسناد مبتنی بر آنتولوژی و رویکرد فازی

Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2009